Abstract

This paper introduces a new estimation-theoretic framework for experiment design in the context of MR image reconstruction under sparsity constraints. The new framework is called OEDIPUS (Oracle-based Experiment Design for Imaging Parsimoniously Under Sparsity constraints) and is based on combining the constrained Cramér-Rao bound with classical experiment design techniques. Compared to popular random sampling approaches, OEDIPUS is fully deterministic and automatically tailors the sampling pattern to the specific imaging context of interest (i.e., accounting for coil geometry, anatomy, image contrast, etc.). OEDIPUS-based experiment designs are evaluated using retrospectively subsampled in vivo MRI data in several different contexts. The results demonstrate that OEDIPUS-based experiment designs have some desirable characteristics relative to conventional MRI sampling approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.