Abstract

Bone transport (BT) for segmentary bone defects is a well-known technique as it enables correction with new bone formation, which is similar to the previous bone. Despite the high number of experimental studies of distraction osteogenesis in bone lengthening, the types of ossification and histological changes that occur in the regenerate of the bone transport process remain controversial.The aim of this study is to provide the complete evolution of tissues and the types of ossification in the regenerate during the different phases of bone formation after BT until the end of the remodelling period.A histological study was performed using ten adult sheep that were submitted to BT. The types of ossification as well as the evolution of different tissues in the regenerate were determined using histomorphometry and inmunohistochemical studies. The evolution of trabeculae thickness, osteoblast and osteoclast densities, relationship between collagen types and changes in vascularization were also studied.Ossification was primarily intramembranous, with some focus of endochondral ossification in isolated animals. The cell counts showed a progression of cellular activity from the periphery to the centre, presenting the same progression as the growth of bone trabeculae, whose trabeculae thickness was quadrupled at the end of remodelling. Inmunohistochemical studies confirmed the prevalence of type I collagen and the ratio of the Type I/Type II collagen ratio was found to be 2.48. The percentages of the vascularized areas were proximally higher than distally in all animals, but distal zone obtained higher rates than the central region.Bone transport regenerate exhibits a centripetal ossification model and a mixed pattern with predominance of intramembranous over endochondral ossification. The data obtained resemble partially to those found in models of bone lengthening applied to large animals. This study provides a detailed structural characterization of the newly formed tissue, which may help to explain the development of the regenerate of bone transport in humans. It will also serve for future mechanobiological models that may aid research on the effect of loading or distractor stiffness in clinical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call