Abstract
The rapid growth of Data Center Network (DCN) traffic has brought new challenges, such as limited bandwidth, high latency, and packet loss to existing DCNs based on electrical switches. Because of its theoretically unlimited bandwidth and faster data transmission speeds, optical switching can overcome the problems of electrically switched DCNs. Additionally, numerous research works have been devoted to optical wired DCNs. However, static and fixed-topology DCNs based on optical interconnects significantly limit their flexibility, scalability, and reconfigurability to provide adaptive bandwidth for traffic with heterogeneous characteristics. In this study, we propose and conduct performance evaluations on a reconfigurable optical wireless DCN architecture based on distributed Software-Defined Networking (SDN), Deep Reinforcement Learning (DRL), Semiconductor Optical Amplifier (SOA), and Arrayed Waveguide Grating Router (AWGR). Our architecture is called ODRAD (which stands for Optical Wireless DCN Dynamic-bandwidth Reconfiguration with AWGR and Deep Reinforcement Learning). A Mininet simulation model is established to further verify the reconfigurability of the ODRAD network for various server scales. Based on experimental verification, ODRAD achieves an average end-to-end server latency of 5.2μs under a load of 99%. Compression results demonstrate a 17.36% improvement in packet rate latency performance compared to RotorNet and a 15.21% improvement compared to OPSquare at a load of 99% as the ODRAD network scales from 2,560 to 40,960 servers. Furthermore, ODRAD exhibits effective throughput across different routing protocols, DCN scales and loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.