Abstract

For the better part of 2 decades, it has been known that dewatering of sediments accreted to or subducted beneath accretionary wedges is a fundamental aspect of the subduction‐accretion process. Yet, evidence for fluid flow in modern accretionary wedges is largely secondary and based on the presence of geochemical and/or thermal anomalies [e.g., Vrolijk et al., 1991]; the analysis of seismic velocity as an indicator of porosity, which suggests a progressive loss of pore volume in a landward direction [e.g., Bray and Karig, 1985]; and the occurrence of secondary sediment microstructures characteristic of fluid movement [e.g., Maltman et al., 1992].The only quantitative measurements of fluid expulsion at surface vents are based on submersible‐deployed, seepage‐meter data [e.g., Carson et al., 1990], and these results—coupled with the surface area of the vents—indicate flow rates significantly greater than can be supported by steadystate dewatering [Le Pichon et al., 1992]. The fluid budgets and mass fluxes associated with accretion are poorly constrained. Results of previous drilling suggest two distinct modes of fluid flow: channelized flow along fault zones (primarily the décollement [e.g., Mascle and Moore, 1990]) or diffuse flow, which is apparently accommodated by a pervasive fracture permeability [e.g., Taira et al., 1992].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.