Abstract

Expanding industries and booming population have led to the increase in the installation of wastewater and sewer systems, even in close proximity to residential areas. Emissions from these installations particularly volatile organo-sulphur compounds (VOSCs) such as methyl mercaptan (CH3SH), ethyl mercaptan (C2H5SH), dimethyl sulphide (CH3SCH3) and carbon disulphide (CS2) are a nuisance to people even when present in small concentration. Strategies for removal involve addition of chemicals or other chemical processes which are generally expensive. Biofilters, on the other hand, consume large amount of energy and wash waters. Hence keeping commercialization in mind, it is important to develop a strategy which would be cost-effective and at the same time be effective to remove most of the odorous compounds present in these systems. In the present research work, granular activated carbons (GAC) are functionalized with alkali solution to improve the adsorption capacity. Liquid phase batch adsorption is performed with GAC and various functionalized activated carbons (FACs) with the help of raw sewage water from a local sewage water treatment plant. Concentration of odour was evaluated by two methods-olfactometry-based analysis for sensory measurement and GCMS-based analysis for analytical estimation of a specific odorous compound. The adsorption capacities of the functionalized GACs are higher primarily because of complex formation at the surface of modified GACs. Pseudo-second-order kinetic model agreed well with experimental results with the rate constant being 0.0191mg/l min and 0.0153mg/l min for methyl and ethyl mercaptan adsorption onto FAC-NH3. Boyd's film diffusion along with rate kinetic model supported that chemical adsorption forms the rate-limiting step. Response surface methodology (RSM) was used to optimize the removal of VOSCs with respect to different process parameters like adsorbent amount and time. The olfactometry removal of overall odour was also optimized taking 6 factors in the Box Behnken design. Variance of analysis results indicated that all the models displayed considerable goodness of fit with R2 values close to 1. Methyl mercaptan turned out to be the highest contributor to the overall odour as confirmed both from experimental and optimization study. The optimized olfactometry odour removal (77.4%) along with CH3SH removal (80.34%), C2H5SH removal (59.16%), CH3SCH3 removal (63.21%) and CS2 removal (71.95%) was found at optimum process conditions, with amount of adsorbent of 10.29g, adsorption time of 2.92h. This result indicates that methyl mercaptan (CH3SH) is the highest odour contributing component out of the studied VOSCs. The results show promising potential for the use of activated carbon as an adsorbent for removal of odorous compounds from STPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call