Abstract

The olfactory system provides a great opportunity to explore the mechanisms that underlie the formation and function of neural circuits because of the simplicity of its structure. Olfactory sensory neurons (OSNs) located in the peripheral olfactory epithelium (OE) take part in the initial formation and function of glomeruli in the olfactory bulb (OB) inside the central nervous system. Glomeruli are key in the process of transduction of olfactory information, as they constitute a map in the OB that sorts the different types of odorant inputs. This odorant categorization allows proper olfactory perception, and it is achieved through the anatomical organization and function of the different glomerular circuits. Once formed, glomeruli keep the capacity to undergo diverse plasticity processes, which is unique among the different neural circuits of the central nervous system. In this context, through the expression and function of the odorant receptors (ORs), OSNs perform two of the most important roles in the olfactory system: transducing odorant information to the nervous system and initiating the development of the glomerular map to organize olfactory information. This review addresses essential information that has emerged in recent years about the molecular basis of these processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.