Abstract

BackgroundChemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals.ResultsProteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to ‘odorant binding proteins’ (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog’s genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception.ConclusionsOur study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest.

Highlights

  • Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals

  • A BLAST search against the Uniprot database [43] identified this sequence as part of an Odorant Binding Protein (OBP), a subclass of structurally related proteins within the lipocalin family that can bind a wide range of volatile molecules [44, 45]

  • We investigated only a limited number of individuals, OBP abundances seemed consistently higher in mixed breeds than in crossbreds and purebreds (Additional files 2 and 3)

Read more

Summary

Introduction

Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. When dogs meet, their sniffing behaviour reveals an obvious focus on the perianal zone that contains the anal sac glands (Fig. 1A, B) [13, 14] Such scent assessment takes place during a first encounter and on a daily basis among pack members. Despite many indications of the multifunctionality of anal sac glands in dogs, investigation of their molecular contents has remained limited to early gas chromatography studies of volatile compounds [17, 18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call