Abstract

The preconditioning of digested sludge in sludge filtration systems produces hydrogen sulfide (H2S), a major odor-causing source. This study evaluated the effects of adding H2S-removing bacteria to sludge-filtration systems. Ferrous-oxidizing bacteria (FOB) and sulfur-oxidizing bacteria (SOB) were mass-cultivated in a hybrid bioreactor equipped with an internal circulation system. In this bioreactor, FOB and SOB effectively removed >99% of H2S; however, the acidic conditions created by adding a coagulant during digested sludge preconditioning were more favorable for FOB than for SOB. In batch tests, SOB and FOB removed 94 ± 1.1% and 99 ± 0.1% of H2S, respectively; therefore, digested sludge preconditioning proved more suitable for FOB activity than SOB activity. The results revealed that the optimal FOB addition ratio was 0.2%, validated using a pilot filtration system. Moreover, the 57.5 ± 2.9ppm H2S generated in the sludge preconditioning step was reduced to 0.01 ± 0.01ppm after adding 0.2% FOB. Therefore, the results of this study will be useful because they provide a process for biologically removing odor-causing sources without affecting the dewatering efficiency of the filtration system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.