Abstract

The olfactory bulb is one of a few brain structures characterized by high plasticity due to the fact that new neurons are continually integrated into the olfactory bulb circuit throughout life. The new cells originate from the subventricular zone of the forebrain and migrate through the rostral migratory stream (RMS) to the olfactory bulb that also represents the first synaptic relay of the olfactory system. Data accumulating in recent years have confirmed that sensory inputs can influence the level of postnatal neurogenesis in the olfactory bulb. In this study, we studied neurogenesis in the rostral migratory stream of Wistar albino rat pups after exposure to an odor-enriched environment. The rats were olfactory stimulated twice daily with different odorants from the day of their birth up to 1, 2 or 3 weeks, respectively. Using bromodeoxyuridine, a marker of cell proliferation, we found an increased number of proliferating cells in the rostral migratory stream of rat pups submitted to olfactory stimulation. Conversely, the number of dying cells, labeled with the fluorescent dye Fluoro Jade-C, was down-regulated in groups of rats exposed to an odor-enriched environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.