Abstract

To understand the operation of the olfactory system, it is essential to know how information is encoded in the olfactory bulb. We applied Shannon information theoretic methods to address this, with signals from up to 57 glomeruli simultaneously optically imaged from presynaptic inputs in glomeruli in the mouse dorsal (dOB) and lateral (lOB) olfactory bulb, in response to six exemplar pure chemical odors. We discovered that, first, the tuning of these signals from glomeruli to a set of odors is remarkably broad, with a mean sparseness of 0.83 and a mean signal correlation of 0.64. Second, both of these factors contribute to the low information that is available from the responses of even populations of many tens of glomeruli, which was only 1.35 bits across 33 glomeruli on average, compared with the 2.58 bits required to perfectly encode these six odors. Third, although there is considerable interest in the possibility of temporal encoding of stimulus including odor identity, the amount of information in the temporal aspects of the presynaptic glomerular responses was low (mean 0.11 bits) and, importantly, was redundant with respect to the information available from the rates. Fourth, the information from simultaneously recorded glomeruli asymptotes very gradually and nonlinearly, showing that glomeruli do not have independent responses. Fifth, the information from a population became available quite rapidly, within 100 ms of sniff onset, and the peak of the glomerular response was at 200 ms. Sixth, the information from the lOB was not additive with that of the dOB.NEW & NOTEWORTHY We report broad tuning and low odor information available across the lateral and dorsal bulb populations of glomeruli. Even though response latencies can be significantly predictive of stimulus identity, such contained very little information and none that was not redundant with information based on rate coding alone. Last, in line with the emerging notion of the important role of earliest stages of responses ("primacy"), we report a very rapid rise in information after each inhalation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call