Abstract

In many prey taxa with aposematic coloration, prey defenses also involve signals in other modalities (odors, sounds, etc.), yet the selective forces that have driven multimodality in warning displays are not well understood. One potential hypothesis that has recently received support in the avian literature (but has yet to be examined in invertebrates) is that different signal components may interact synergistically, such that one component of a signal (odor) may trigger a predator’s aversion to another component of a signal (color). Here, we gave jumping spiders (Habronattus trimaculatus) the choice between red or black prey (artificially colored termites) in either the presence or absence of odor from the chemically defended coreid bug (Acanthocephala femorata). When the odor was present, spiders were more likely to avoid the color red compared with when the odor was absent. Interestingly, this pattern only held up when the odor was novel; subsequent exposure to the odor had no effect on color preference. Moreover, this pattern only held for the color red (a color typically used as a warning color and often paired with odor). We replicated this experiment giving spiders the choice between green or black prey, and found that the presence of the odor had no effect on the spiders’ responses to the color green. We discuss these findings in the context of predator psychology and the evolution of prey coloration.

Highlights

  • Predator psychology has long been recognized as an important selective force driving the evolution of prey defenses with considerable emphasis on understanding the evolution of aposematic coloration (Guilford 1992; Rowe 1999; Ruxton et al 2004; Miller and Bee 2012; Skelhorn et al 2016)

  • In subsequent tests (n = 18), after the spiders had been exposed to the odor over several trials, the odor had no effect on color preferences (Fisher’s exact test, P = 0.99 Figure 3b)

  • The aversive odor in our study had no effect on how the spiders responded to green prey; again, this is consistent with findings in avian predators

Read more

Summary

Introduction

Predator psychology has long been recognized as an important selective force driving the evolution of prey defenses with considerable emphasis on understanding the evolution of aposematic coloration (Guilford 1992; Rowe 1999; Ruxton et al 2004; Miller and Bee 2012; Skelhorn et al 2016). Aposematic color patterns (often employing striking combinations of reds, oranges, and yellows in order to warn potential predators) are paired with signals in other modalities (e.g., startling sounds, aversive odors, etc.) (reviewed in Rowe and Halpin 2013). These different signal components are thought to work together to signal unpalatability, but how predators perceive, process, and respond to these combinations is not well understood (reviewed in Rowe and Halpin 2013).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.