Abstract

The response of the dental pulp to calcium hydroxide has been well described but the process of pulpal repair leading to dentinal bridge formation appears complex and the mechanisms remain incompletely understood. Through the precise regulation of the free calcium ion in the cytosol, cells have been able to utilize anions such as phosphates for a wide range of activities such as energy production (oxidative phosphorylation). As anions are abundant in the cytosol, intracellular levels of calcium ions are kept low, several orders of magnitude less than that of the surrounding extracellular matrix. Consequently, cells are able to use calcium ions for the regulation of many cellular events. The binding of extracellular molecules such as cytokines, hormones or antibodies, with receptors on the plasma membrane may result in short- or long-term modifications to cellular metabolism, including the mechanisms of intracellular calcium homeostasis. Cell survival depends upon the ability to adapt to changes in the cell's micro-environment. Adaptation in turn results in altered cellular activity that may be interpreted as showing that the cell has become more or less specialised. In some instances this may include the resumption of mitotic activity. If the rate or magnitude of change exceeds a cell's adaptive capacity, the cell dies. Responses of cells to alterations in their environment are reviewed as they may provide an explanation for the success of calcium hydroxide in facilitating pulpal repair and the differentiation of odontoblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call