Abstract

A simple one-dimensional analytical solution is presented to model oxygen diffusion through the pore space of mine spoils containing pyrite. The model incorporates volumetric oxygen consumption terms due to pyrite oxidation, oxidation of Fe 2+ to Fe 3+ and bacterial activity. Based on this analytical solution, a graphical user interface (GUI) tool is programmed and designed in MATLAB software. This tool can be used to model transport of oxygen through the mine spoils either with or without a cap. Results of several simulation scenarios of sensitivity analysis showed a significant change in oxygen concentration with varying effective diffusion coefficient of oxygen transport model and simulation time. Efficiency and flexibility of the tool developed here is verified by modelling oxygen transport through the pore space of a coal waste pile (case A) and a copper mine tailings (case B). Maximum depth of oxygen diffusion is obtained approximately equal to 2 and 1.5 m through the cases A and B, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call