Abstract
One of the challenging problems in optical character recognition (OCR) is the identification of handwritten characters. It has several complexities like missing part, size variation, added noise, media devices used, slant variation etc. The goal of this paper is to develop an effective system for recognition of Odia handwritten vowels using functional link artificial neural network (FLANN) classifier and differential evolution (DE) optimization technique. In this paper the emphasis is on preprocessing, feature extraction, feature reduction and classification with optimization technique. Various preprocessing operations like size normalization mean filtering and canny edge detection methods are carried out on the vowel images to enhance the quality. Slantlet transform (SLT) is applied for feature extraction and the extracted features are further reduced by principal component analysis (PCA) method. FLANN classifier is applied on the reduced feature vector and the weights of the FLANN are optimized with DE evolutionary technique. The system has achieved a good classification accuracy of 91.32% on the dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Research in Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.