Abstract

We present a detailed theoretical study of the odd-even harmonics generated from the polar molecule CO by the method based on numerically solving the time-dependent Schrödinger equation within the single-active-electron approximation. First, we reproduce the pure even harmonic generation of CO predicted theoretically by Hu et al. using the time-dependent density functional theory [H. Hu et al., Phys. Rev. Lett., 2017, 119, 173201]. Then, based on the Floquet approach, we are able to attribute this behavior to the half-cycle mirror symmetry of the molecule-field system when the polar molecule is perpendicular to the laser polarization. By numerical simulations, we show that this symmetry is broken at orientation angles other than 90° resulting in the odd-even harmonic generation and a non-trivial even-to-odd harmonics ratio strongly dependent on the molecular orientation. Furthermore, we investigate the influence of the dynamic core-electron polarization (DCeP) on the odd-even behavior near the cutoff of the high-order harmonic spectra. We emphasize that the DCeP effect is noticeable for the odd harmonics only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call