Abstract

An injective function $f:V(G)\rightarrow \{0,1,2,\dots,q\}$ is an odd sum labeling if the induced edge labeling $f^*$ defined by $f^*(uv)=f(u)+f(v),$ for all $uv\in E(G),$ is bijective and $f^*(E(G))=\{1,3,5,\dots,2q-1\}.$ A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper we study the odd sum property of graphs obtained by duplicating any edge of some graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.