Abstract
In the setting of ZF, i.e., Zermelo–Fraenkel set theory without the Axiom of Choice (AC), we study partitions of Russell-sets into sets each with exactly n elements (called n -ary partitions), for some integer n. We show that if n is odd, then a Russell-set X has an n -ary partition if and only if |X | is divisible by n. Furthermore, we establish that it is relative consistent with ZF that there exists a Russell-set X such that |X | is not divisible by any finite cardinal n > 1 (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.