Abstract
We define several homology theories for central hyperplane arrangements, categorifying well-known polynomial invariants including the characteristic polynomial, Poincaré polynomial, and Tutte polynomial. We consider basic algebraic properties of such chain complexes, including long-exact sequences associated to deletion–restriction triples and dg-algebra structures. We also consider signed hyperplane arrangements, and generalize the odd Khovanov homology of Ozsváth–Rasmussen–Szabó from link projections to signed arrangements. We define hyperplane Reidemeister moves which generalize the usual Reidemeister moves from framed link projections to signed arrangements, and prove that the chain homotopy type associated to a signed arrangement is invariant under hyperplane Reidemeister moves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.