Abstract

Abstract. Understanding the atmospheric forcing from energetic particle precipitation (EPP) is important for climate simulations on decadal time scales. However, presently there are large uncertainties in energy flux measurements of electron precipitation. One approach to narrowing these uncertainties is by analyses of EPP direct atmospheric impacts and their relation to measured EPP fluxes. Here we use observations from the microwave limb sounder (MLS) and Whole Atmosphere Community Climate Model (WACCM) simulations, together with EPP fluxes from the Geostationary Operational Environmental Satellite (GOES) and Polar-orbiting Operational Environmental Satellite (POES) to determine the OH and HO2 response thresholds to solar proton events (SPEs) and radiation belt electron (RBE) precipitation. Because of their better signal-to-noise ratio and extended altitude range, we utilize MLS HO2 data from an improved offline processing instead of the standard operational product. We consider a range of altitudes in the middle atmosphere and all magnetic latitudes from pole to pole. We find that the nighttime flux limits for day-to-day EPP impact detection using OH and HO2 are 50–130 protonscm-2s-1sr-1 (E>10 MeV) and 1.0–2.5×104 electronscm-2s-1sr-1 (E = 100–300 keV). Based on the WACCM simulations, nighttime OH and HO2 are good EPP indicators in the polar regions and provide best coverage in altitude and latitude. Due to larger background concentrations, daytime detection requires larger EPP fluxes and is possible in the mesosphere only. SPE detection is easier than RBE detection because a wider range of polar latitudes is affected, i.e., the SPE impact is rather uniform poleward of 60∘, while the RBE impact is focused at 60∘. Altitude-wise, the SPE and RBE detection are possible at ≈ 35–80 and ≈ 65–75 km, respectively. We also find that the MLS OH observations indicate a clear nighttime response to SPE and RBE in the mesosphere, similar to the simulations. However, the MLS OH data are too noisy for response detection in the stratosphere below 50 km, and the HO2 measurements are overall too noisy for confident EPP detection on a day-to-day basis.

Highlights

  • Solar energetic particle precipitation (EPP) affects the polar atmospheric chemistry directly at the altitude region from the upper stratosphere to the lower thermosphere

  • Whole Atmosphere Community Climate Model (WACCM)-D and microwave limb sounder (MLS) compare reasonably well in the magnitude and spatiotemporal variability in OH and HO2. In both MLS and WACCM-D daytime concentration profiles, there is a maximum in the stratosphere and mesosphere, which reflects the production being dependent on atomic oxygen and Lyman-alpha radiation, respectively

  • WACCM-D simulations have provided us with the theoretical thresholds for the detection, while MLS observations are the present reality that is affected by the quality of the measurements

Read more

Summary

Introduction

Solar energetic particle precipitation (EPP) affects the polar atmospheric chemistry directly at the altitude region from the upper stratosphere to the lower thermosphere. There is evidence of EPP-driven variability in winter–springtime ozone (Andersson et al, 2014a; Damiani et al, 2016), which could further connect to decadal variability in regional climate via modulation of polar vortex dynamics and the topdown coupling (e.g., Seppälä et al, 2014). Solar wind proton fluxes are continuously measured by detectors aboard the Geostationary Operational Environmental Satellites (GOES) in the geosynchronous orbit (https://www.ngdc.noaa.gov/stp/ satellite/goes/, last access: 17 December 2020).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call