Abstract

We complete the rules of translation between standard complex quantum mechanics (CQM) and quaternionic quantum mechanics (QQM) with a complex geometry. In particular we describe how to reduce ($2n$+$1$)-dimensional complex matrices to {\em overlapping\/} ($n$+$1$)-dimensional quaternionic matrices with generalized quaternionic elements. This step resolves an outstanding difficulty with reduction of purely complex matrix groups within quaternionic QM and avoids {\em anomalous} eigenstates. As a result we present a more complete translation from CQM to QQM and viceversa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.