Abstract
We investigate the generic 3D topological field theory within the AKSZ-BV framework. We use the Batalin-Vilkovisky (BV) formalism to construct explicitly cocycles of the Lie algebra of formal Hamiltonian vector fields and we argue that the perturbative partition function gives rise to secondary characteristic classes. We investigate a toy model which is an odd analogue of Chern-Simons theory, and we give some explicit computation of two point functions and show that its perturbation theory is identical to the Chern-Simons theory. We give a concrete example of the homomorphism taking Lie algebra cocycles to Q-characteristic classes, and we reinterpret the Rozansky-Witten model in this light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.