Abstract

Accurate detection of wood defects plays a crucial role in optimizing wood utilization, minimizing corporate expenses, and safeguarding precious forest resources. To achieve precise identification of surface defects in wood, we present a novel approach called the Omni-dynamic convolution coordinate attention-based YOLO (ODCA-YOLO) model. This model incorporates an Omni-dimensional dynamic convolution-based coordinate attention (ODCA) mechanism, which significantly enhances its ability to detect small target defects and boosts its expressiveness. Furthermore, to reinforce the feature extraction and fusion capabilities of the ODCA-YOLO network, we introduce a highly efficient features extraction network block known as S-HorBlock. By integrating HorBlock into the ShuffleNet network, this design optimizes the overall performance. Our proposed ODCA-YOLO model was rigorously evaluated using an optimized wood surface defect dataset through ablation and comparison experiments. The results demonstrate the effectiveness of our approach, achieving an impressive 78.5% in the mean average precision (mAP) metric and showing a remarkable 9% improvement in mAP compared to the original algorithm. Our proposed model can satisfy the need for accurate detection of wood surface defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.