Abstract

The purpose of this study was to investigate refraction at birth and during the first year of life in a large cohort of babies born in a single center in Northern Italy. We also aimed to analyze refractive errors in relation to the gestational age at birth. An observational ophthalmological assessment was performed within 24 h of birth on 12,427 newborns. Refraction was examined using streak retinoscopy after the administration of tropicamide (1%). Values in the range of between +0.50 ≤ D ≤ +4.00 were defined as physiological refraction at birth. Newborns with refraction values outside of the physiological range were followed up during the first year of life. Comparative analyses were conducted in a subgroup of babies with known gestational ages. The following distribution of refraction at birth was recorded: 88.03% of the babies had physiological refraction, 5.03% had moderate hyperopia, 2.14% had severe hyperopia, 3.4%, had emmetropia, 0.45%, had myopia, 0.94% had astigmatism, and 0.01% had anisometropia. By the end of the first year of life, we observed reductions in hyperopia and astigmatism, and stabilization of myopia. Preterm babies had a four-fold higher risk of congenital myopia and a three-fold higher risk of congenital emmetropia as compared to term babies. Refraction profiles obtained at birth changed during the first year of life, leading to a normalization of the refraction values. Gestational age at birth affected the incidence of refractive errors and amblyopia.

Highlights

  • The eye is maximally functional and efficient in a state of emmetropia, which involves slight hyperopia

  • Several studies have shown that emmetropia should not be evaluated at birth, but rather, that mild hyperopia is the natural state of refractive development in children, and that emmetropia during childhood carries the risk of subsequent progression to myopia [5]

  • Physiological hyperopia and non-physiological refraction were observed in 78% and 22% of the newborns, respectively

Read more

Summary

Introduction

The eye is maximally functional and efficient in a state of emmetropia, which involves slight hyperopia. There are convincing data showing that in the early developmental phase, good visual functioning plays a decisive role in establishing correct ocular growth [1]. This developmental process, which occurs early in life and leads to refractive modulation, is called emmetropization [2,3,4]. This is not a stable condition, as it represents a gradual and complex growth process that begins at birth and ends during the first few years of life [5, 6]. Several studies have shown that emmetropia should not be evaluated at birth, but rather, that mild hyperopia is the natural state of refractive development in children, and that emmetropia during childhood carries the risk of subsequent progression to myopia [5]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call