Abstract

Phototherapy can be translated to mean 'light or radiant energy-induced treatment.' Lasers have become the exclusive source of light or radiant energy for all applications of phototherapy. Depending on the wavelength, intensity, and duration of exposure, tissues can either absorb the energy (photocoagulation, thermotherapy, and photodynamic therapy (PDT)) or undergo ionization (photodisruption). For phototherapy to be effective, the energy has to be absorbed by tissues or more specifically by naturally occurring pigment (xanthophyll, haemoglobin, and melanin) within them. In tissues or tumours that lack natural pigment, dyes (verteporphin, Visudyne) with narrow absorption spectrum can be injected intravenously that act as focal absorbent of laser energy after they have preferentially localized within the tumour. Ocular phototherapy has broad applications in treatment of ocular tumours. Laser photocoagulation, thermotherapy, and PDT can be delivered with low rates of complications and with ease in the outpatient setting. Review of the current literature suggests excellent results when these treatments are applied for benign tumours, particularly for vascular tumours such as circumscribed choroidal haemangioma. For primary malignant tumours, such as choroidal melanoma, thermotherapy, and PDT do not offer local tumour control rates that are equivalent or higher than those achieved with plaque or proton radiation therapy. However, for secondary malignant tumours (choroidal metastases), thermotherapy and PDT can be applied as a palliative treatment. Greater experience is necessary to fully comprehend risks, comparative benefits, and complication of ocular phototherapy of ocular tumours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call