Abstract

IntroductionTopical ophthalmic formulations of corticosteroids are commonly used to treat a variety of ocular diseases and conditions that have an inflammatory component. The purpose of this study was to evaluate the effect of the mucus-penetrating particle (MPP) technology on the pharmacokinetic profile of loteprednol etabonate in the ocular tissues of rabbits.MethodsForty-eight New Zealand White rabbits were randomly assigned to two groups (n = 3 rabbits or 6 eyes per time point) and treated with either the novel loteprednol etabonate MPP suspension formulation, 0.4% (LE-MPP 0.4%), or the commercial Lotemax®-brand loteprednol etabonate ophthalmic suspension, 0.5% (Lotemax 0.5%) (Bausch & Lomb Incorporated, Inc., Rochester, NY, USA). Samples of aqueous humor, various ocular tissues, and plasma were collected from animals over a 12-h period after a single dose of the test articles. Loteprednol etabonate concentrations were assayed using liquid chromatography–tandem mass spectrometry (LC/MS/MS).ResultsLoteprednol etabonate was rapidly absorbed into ocular tissues following administration of either formulation. A higher ocular exposure was achieved using LE-MPP 0.4%, with peak concentrations of approximately threefold higher in ocular tissues and the aqueous humor than Lotemax 0.5%.ConclusionsAdministration of LE-MPP 0.4% improved loteprednol etabonate pharmacokinetic profile in ocular tissues of rabbits. The results of this study support the premise that the MPP technology can be used to enhance ocular exposure for topically applied therapeutic agents. Further studies to assess the clinical efficacy and safety of the LE-MPP formulation are warranted.Electronic supplementary materialThe online version of this article (doi:10.1007/s40123-014-0021-z) contains supplementary material, which is available to authorized users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.