Abstract

PurposeTo compare ocular outcomes in healthy subjects undergoing 14- and/or 70-day head-down-tilt (HDT) bed rest (BR).MethodsParticipants were selected by using NASA standard screening procedures. Standardized NASA BR conditions were implemented. Subjects maintained a 6° HDT position for 14 and/or 70 consecutive days. Weekly ophthalmologic examinations were performed in the sitting (pre/post-BR only) and HDT positions. Mixed-effects linear models compared pre- and post-HDT BR observations between 14- and 70-day HDT BR in best-corrected visual acuity, spherical equivalent, intraocular pressure (IOP), Spectralis OCT retinal nerve fiber layer thickness, peripapillary and macular retinal thicknesses.ResultsSixteen and six subjects completed the 14- and 70-day HDT BR studies, respectively. The magnitude of HDT BR–induced changes was not significantly different between the two studies for all outcomes, except the superior (mean pre/post difference of 14- vs. 70-day HDT BR: +4.69 μm versus +11.50 μm), nasal (+4.63 μm versus +11.46 μm), and inferior (+4.34 μm versus +10.08 μm) peripapillary retinal thickness. A +1.42 mm Hg and a +1.79 mm Hg iCare IOP increase from baseline occurred during 14- and 70-day HDT BR, respectively. Modified Amsler grid, red dot test, confrontational visual field, color vision, and stereoscopic fundus photography were unremarkable.ConclusionsSeventy-day HDT BR induced greater peripapillary retinal thickening than 14-day HDT BR, suggesting that time may affect the amount of optic disc swelling. Spectralis OCT detected retinal nerve fiber layer thickening post BR, without clinical signs of optic disc edema. A small IOP increase during BR subsided post HDT BR. Such changes may have resulted from BR-induced cephalad fluids shift. The HDT BR duration may be critical for replicating microgravity-related ophthalmologic changes observed in astronauts on ≥6-month spaceflights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.