Abstract

The ability to form associations between stimuli and commit those associations to memory is a cornerstone of human cognition. Dopamine and noradrenaline are critical neuromodulators implicated in a range of cognitive functions, including learning and memory. Eye blink rate (EBR) and pupil diameter have been shown to index dopaminergic and noradrenergic activity. Here, we examined how these ocular measures relate to accuracy in a paired-associate learning task where participants (N = 73) learned consistent object-location associations over eight trials consisting of pre-trial fixation, encoding, delay, and retrieval epochs. In order to examine how within-subject changes and between-subject changes in ocular metrics related to accuracy, we mean centered individual metric values on each trial based on within-person and across-subject means for each epoch. Within-participant variation in EBR was positively related to accuracy in both encoding and delay epochs: faster EBR within the individual predicted better retrieval. Differences in EBR across participants was negatively related to accuracy in the encoding epoch and in early trials of the pre-trial fixation: faster EBR, relative to other subjects, predicted poorer retrieval. Visual scanning behavior in pre-trial fixation and delay epochs was also positively related to accuracy in early trials: more scanning predicted better retrieval. We found no relationship between pupil diameter and accuracy. These results provide novel evidence supporting the utility of ocular metrics in illuminating cognitive and neurobiological mechanisms of paired-associate learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call