Abstract

Choroidal neovascularization (CNV) is among the leading causes of blindness worldwide. Bevacizumab has demonstrated promising effects on CNV treatment; however, frequent intravitreal injection is its major drawback. Current study aimed to address this issue by developing a sustained release formulation through nanoparticles of bevacizumab imbedded in an ocular implant. Bevacizumab-loaded chitosan nanoparticles were prepared by ionic gelation method and inserted in the matrix of hyaluronic acid and zinc sulfate. Despite the common approaches in using ultraviolet (UV)-spectrophotometry, microprotein-Bradford, and bicinchoninic acid (BCA), assay for protein assessment, our results revealed a remarkable UV-Vis absorption overlap of protein and chitosan during these analysis and thus enzyme-linked immunosorbent assay was employed for the antibody concentration assay. The size of optimized nanoparticles obtained through statistical analysis based on design of experiments was 78.5 ± 1.9 nm with polydispersity index of 0.13 ± 0.05 and the entrapment-efficiency and loading-efficiency were 67.6 ± 6.7 and 15.7 ± 5.7%, respectively. The scanning electron microscopy and confocal microscopy images revealed a homogenous distribution of nanoparticles in the implant matrix and the release test results indicated an appropriate extended release of bevacizumab from the carrier over two months. In conclusion, the prepared system provided a sustained release bevacizumab delivery formulation which can introduce a promising ocular drug delivery system intended for posterior segment disease. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2261-2271, 2018.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.