Abstract

Stress proteins are thought to play an important role in cellular development and in survival mechanisms. We compared the immunolocalization of the 70-kDa stress protein (SP70) in the ocular tissue of the normal Sprague-Dawley (SD) rat with that in the Royal College of Surgeons (RCS) rat with retinal dystrophy. SP70 was present in the maturing ocular tissues of both rat strains. However, once retinal degeneration began in the RCS rat, the retinal pigment epithelium and photoreceptor cells showed increased immunostaining for SP70 over that observed in age-matched SD rats. In late stages of retinal degeneration, immunostaining for SP70 was considerably reduced in the RCS retina, whereas normal distribution of immunostaining for SP70 in the SD retina was preserved, albeit decreased, through postnatal day 180. The optic nerve, ciliary body, and corneal epithelium were also influenced by the dystrophic disease condition, although the pattern of changes in SP70 immunostaining differed for each tissue. These results suggest that the genetic defect in the RCS rat produces a state of metabolic stress in all ocular tissues as the degeneration progresses, but that the subsequent rise in ocular SP70 is insufficient to prevent progression of the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.