Abstract

Glaucoma is an ocular disease featuring increased intraocular pressure (IOP) and its primary treatment strategy is to lower IOP by medication. Current ocular drug delivery in treating glaucoma is confronting a variety of challenges, such as low corneal permeability and bioavailability due to the unique anatomical structure of the human eye. To tackle these challenges, a cubosome drug delivery system for glaucoma treatment was constructed for timolol maleate (TM) in this study. The TM cubosomes (liquid crystalline nanoparticles) were prepared using glycerol monooleate and poloxamer 407 via high-pressure homogenization. These constructed nanoparticles appeared spherical using transmission electron microscopy and had an average particle size of 142nm, zeta potential of -6.27mV, and over 85% encapsulation efficiency. Moreover, using polarized light microscopy and small-angle X-ray scattering (SAXS), it was shown that the TM cubosomes have cubic liquid crystalline D-type (Pn3m) structure, which provides good physicochemical stability and high encapsulation efficiency. Ex vivo corneal permeability experiments showed that the total amount of TM cubosomes penetrated was higher than the commercially available eye drops. In addition, in vivo studies revealed that TM cubosomes reduced the IOP in rabbits from 27.8∼39.7 to 21.4∼32.6mmHg after 1-week administration and had a longer retention time and better lower-IOP effect than the commercial TM eye drops. Furthermore, neither cytotoxicity nor histological impairment in the rabbit corneas was observed. This study suggests that cubosomes are capable of increasing the corneal permeability and bioavailability of TM and have great potential for ocular disease treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.