Abstract

Otoliths are the primary gravity sensors of the vestibular system and are responsible for the ocular counter-roll (OCR). This compensatory eye torsion ensures gaze stabilization and is sensitive to a head roll with respect to gravity and the Gravito-Inertial Acceleration vector during, e.g., centrifugation. To measure the effect of prolonged spaceflight on the otoliths, we quantified the OCR induced by off-axis centrifugation in a group of 27 cosmonauts in an upright position before and after their 6-month space mission to the International Space Station. We observed a significant decrease in OCR early postflight, larger for first-time compared to experienced flyers. We also found a significantly larger torsion for the inner eye, the eye closest to the rotation axis. Our results suggest that experienced cosmonauts have acquired the ability to adapt faster after G-transitions. These data provide a scientific basis for sending experienced cosmonauts on challenging missions that include multiple g-level transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.