Abstract
Ocular-chondrodysplasia in Labrador Retriever dogs is characterized by short-limbed dwarfism and ocular abnormalities. The purposes of the present study were to develop morphological criteria to define the matrix and/or chondrocytic abnormalities associated with this chondrodysplasia, and to test the hypothesis that ineffective matrix-directed cellular swelling was associated with the decreased longitudinal bone growth in these animals. The proximal and distal radial growth plates were collected from four affected animals of the same litter. Stereological techniques were used to analyze both cellular shapes and cellular volume changes in the hypertrophic zone. The pathological changes seen in these growth plates varied between animals and included disorganization of cellular columns with abnormal extent of calcification. Chondrocytes of all zones contained two types of abnormal cellular inclusions classified as light and dark, based on the intensity of eosinophilic staining. Both types of inclusions contained material that resembled the surrounding extracellular matrix, varying only in the apparent hydration of the contents. It could be demonstrated that light inclusions were located in the peripheral cytoplasm and connected to the extracellular matrix through narrow channels. By contrast, dark inclusions were membrane bound and perinuclear. Chondrocytes with multiple, large inclusions appeared to be undergoing degenerative changes. Although the final volume achieved by hypertrophic chondrocytes was consistent with that of normal growth plates, there was a high level of variability of chondrocytic shape and evidence of premature cellular condensation in the maturation zone. The severity of the dwarfism correlated both with the extent of chondrocytic changes and the severity of the ocular lesions.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.