Abstract
Male-male combats over females and territories are widespread across animal taxa. The winner of a combat gains resources, while the loser suffers significant costs (e.g. time, energy and injury) without gaining resources. Many animals have evolved behavioral flexibility, depending on their nutritional condition and experience, to avoid combat in order to reduce such costs. In these cases, male aggression often correlates with mating behavior changes, that is, the deployment of alternative reproductive tactics. Therefore, uncovering the physiological mechanism that orchestrates combat and mating behaviors is essential to understand the evolution of alternative mating tactics. However, so far, our knowledge is limited to specific behaviors (i.e., fighting or mating) of specific model species. In this study, we used an armed beetle (Gnatocerus cornutus) and hypothesized that one of the key neuromodulators of invertebrate aggression, octopamine (OA), would control male combat and other mating behaviors. Using receptor agonists (chlordimeform and benzimidazole), we showed that the octopaminergic (OAergic) system down-regulated the combat and courtship behaviors, while it up-regulated locomotor activity and sperm size. This suggests that the OAergic system orchestrates a suite of fighting and mating behaviors, thereby implying that correlated behavioral responses to OAergic signaling may have driven the evolution of alternative mating tactics in this beetle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.