Abstract
Mechanisms that could mitigate the effects of hypoxia on neuronal signaling are incompletely understood. We show that axonal performance of a locust visual interneuron varied depending on oxygen availability. To induce hypoxia, tracheae supplying the thoracic nervous system were surgically lesioned and action potentials in the axon of the descending contralateral movement detector (DCMD) neuron passing through this region were monitored extracellularly. The conduction velocity and fidelity of action potentials decreased throughout a 45-min experiment in hypoxic preparations, whereas conduction reliability remained constant when the tracheae were left intact. The reduction in conduction velocity was exacerbated for action potentials firing at high instantaneous frequencies. Bath application of octopamine mitigated the loss of conduction velocity and fidelity. Action potential conduction was more vulnerable in portions of the axon passing through the mesothoracic ganglion than in the connectives between ganglia, indicating that hypoxic modulation of the extracellular environment of the neuropil has an important role to play. In intact locusts, octopamine and its antagonist, epinastine, had effects on the entry to, and recovery from, anoxic coma consistent with octopamine increasing overall neural performance during hypoxia. These effects could have functional relevance for the animal during periods of environmental or activity-induced hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.