Abstract

Octopamine and 5-hydroxytryptamine (5-HT) have been known to mediate cellular immune responses, such as hemocytic phagocytosis and nodule formation, during bacterial invasion in some insects. In addition, eicosanoids also mediate these cellular immune reactions in various insects, resulting in clearing the bacteria circulating in the hemolymph. This study investigated a hypothesis on signal cross-talk between both types of immune mediators in the beet armyworm, Spodoptera exigua, which had been observed in the effect of eicosanoids on mediating the cellular immune responses. In response to bacterial infection, octopamine or 5-HT markedly enhanced both hemocytic phagocytosis and nodule formation in S. exigua larvae. Their specific antagonists, phentolamine (an octopamine antagonist) or ketanserin (a 5-HT antagonist) suppressed both cellular immune responses of S. exigua. These effects of biogenic monoamines on the immune mediation were expressed through eicosanoids because the inhibitory effects of both antagonists were rescued by the addition of arachidonic acid (a precursor of eicosanoid biosynthesis). Furthermore, the stimulatory effects of both monoamines on the cellular immune responses were significantly suppressed by different inhibitors acting at their specific levels of eicosanoid biosynthesis. Taken together, this study suggests that octopamine and 5-HT can mediate hemocytic phagocytosis and nodule formation through a downstream signal pathway relayed by eicosanoids in S. exigua.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.