Abstract
Soft x-ray microscopy is a powerful imaging technique that provides sub-micron spatial resolution, as well as chemical specificity using core-level near-edge x-ray absorption fine structure (NEXAFS). Near the carbon K-edge (280-300 eV) biological samples exhibit high contrast, and the detailed spectrum contains information about the local chemical environment of the atoms. Most soft x-ray imaging takes place on dedicated beamlines at synchrotron facilities or at x-ray free electron laser facilities. Tabletop femtosecond laser systems are now able to produce coherent radiation at the carbon K-edge and beyond through the process of high harmonic generation (HHG). The broad bandwidth of HHG is seemingly a limitation to imaging, since x-ray optical elements such as Fresnel zone plates require monochromatic sources. Counter-intuitively, the broad bandwidth of HHG sources can be beneficial as it permits chemically-specific hyperspectral imaging. We apply two separate techniques - Fourier transform spectroscopy, and lensless holographic imaging - to obtain images of an object simultaneously at multiple wavelengths using an octave-spanning high harmonic source with photon energies up to 30 eV. We use an interferometric delay reference to correct for nanometer-scale fluctuations between the two HHG sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.