Abstract

Femtosecond laser pulses, which are tunable from 440 to 990 nm, are generated at MHz repetition rates by noncollinear parametric amplification (NOPA). The pulses have durations of 20 to 30 fs over the major part of the tuning range and a high energy stability of 1.3% (rms). The NOPA is pumped with ultraviolet pulses from the third harmonic of an ytterbium doped fiber laser system and seeded by a smooth continuum generated in bulk sapphire. The residual second harmonic is used to pump an additional NOPA, which is independently tunable from 620 to 990 nm. Interference experiments show that the two NOPA systems have a precisely locked relative phase, despite of being pumped by different harmonics with a random phase jitter. This demonstrates that the phase of pulses generated by optical parametric amplification does not depend on the pump phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.