Abstract
In this work, we have examined the efficiency of continuum solvation models, used with density functional theory methods, in calculating octanol-water partition coefficients (logP) of 56 fluorine containing drug molecules. The solvation model based on density model computed logP values that are in good agreement with the benchmark values. The conductor-like polarizable continuum models computed results have issues in predicting correct trend, often with reversal of sign from benchmark. The choice of basis set does not show significant effect, and the selection of atomic radii affects geometry convergence during calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.