Abstract

Acute liver injury (ALI) is an essential component of sepsis associated with poor outcomes. Octanoic acid (OA), a medium-chain fatty acid, has a protective effect on sepsis-induced organ damage, and autophagy is an adaptive response to sepsis. However, the underlying mechanism by which OA prevents ALI remains unknown. Therefore, we investigated whether OA-rich enteral nutrition (EN) prevented lipopolysaccharide (LPS)-induced ALI through the c-Jun N-terminal kinase (JNK)-dependent autophagy. Firstly, Sprague Dawley rats were randomly divided into four groups (sham, LPS, LPS + EN, and LPS + EN + OA) to detect the effect of OA-rich EN on LPS-induced ALI. Then, rats were randomly divided into five groups (sham, LPS, LPS + EN + OA, LPS + EN + OA + anisomycin (AN), and LPS + SP600125) to explore the mechanism by which OA-rich EN prevented ALI. EN and OA-rich EN were conducted through gastric tubes for 3 days. The liver protective effects were measured by liver histopathological changes, enzymes, inflammatory cytokines of serum and liver, the levels of autophagy, and JNK activity. OA-rich EN inhibited JNK activity, up-regulated autophagy and prevented LPS-induced ALI. Inhibition of JNK activity conferred by SP promoted autophagy and prevented LPS-induced ALI. Moreover, the protective effect of autophagy and inhibition of JNK activity conferred by OA-rich EN on ALI was counteracted by AN. OA-rich EN prevented LPS-induced ALI through JNK-dependent autophagy. This result suggested that OA-rich EN may be a therapeutic potential for ALI in patients with sepsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call