Abstract

The enthalpy differences (Delta H degrees ) of the equilibrium between the octahedral and tetrahedral solvated cobalt(II) complexes were obtained in some primary alkylamines such as propylamine (pa, 36.1 +/- 2.3 kJ mol(-1)), n-hexylamine (ha, 34.9 +/- 1.0 kJ mol(-1)), 2-methoxyethylamine (meea, 44.8 +/- 3.1 kJ mol(-1)), and benzylamine (ba, 50.1 +/- 3.6 kJ mol(-1)) by the spectrophotometric method. The differences in the energy levels between the two geometries of the cobalt(II) complexes in the spherically symmetric field (Delta E(spher)) were estimated from the values of Delta H degrees by offsetting the ligand field stabilization energies. It was indicated that the value of Delta E(spher) is the decisive factor in determining the value of Delta H degrees and is largely dependent on the electronic repulsion between the d-electrons and the donor atoms and the interelectronic repulsion in the d orbitals. The comparison between activation enthalpies (Delta H(++)) for the solvent exchange reactions of octahedral cobalt(II) ions in pa and meea revealed that the unexpectedly large rate constant and small Delta H(++) in pa are attributed to the strong electronic repulsion in the ground state and removal of the electronic repulsion in the dissociative transition state, which can give the small Delta E(spher) between the ground and transition states. Differences in the solvent exchange rates and the DeltaH(++) values of the octahedral metal(II) ions in some other solvents are discussed in connection with the electronic repulsive factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call