Abstract

Low temperature polarized neutron reflectometry measurements are presented, exploring the evolution of ferrimagnetism in thin GdTiO3 films embedded within a SrTiO3 matrix. In GdTiO3 films thinner than ∼4 nm, the TiO6 octahedral tilts endemic to GdTiO3 coherently relax toward the undistorted, cubic phase of SrTiO3. Our measurements indicate that the ferrimagnetic state within the GdTiO3 layers survives as these TiO6 octahedral tilts are suppressed. Furthermore, our data suggest that layers of suppressed magnetization (i.e., magnetic dead layers) develop within the GdTiO3 layer at each GdTiO3/SrTiO3 interface and explain the apparent magnetization suppression observed in thin GdTiO3 films when using volume-averaged techniques. Our data show that the low temperature magnetic moment inherent to the core GdTiO3 layers is only weakly impacted as the octahedral tilt angles are suppressed by more than 50% and the t2g bandwidth is dramatically renormalized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.