Abstract

Hydrogen (H2) therapy is a novel and rapidly developing strategy utilized to treat inflammatory diseases. However, the therapeutic efficacy of H2 is largely limited with on-target off-synovium toxic effect, nonpolarity and low solubility. Herein, an intelligent H2 nanogenerator based upon the metal-organic framework (MOF) loaded with polydopamine and Perovskite quantum dots is constructed for the actualization of hydrogenothermal therapy. The biodegradable polydopamine with excellent photothermal conversion efficiencies is used for photothermal therapy (PTT) of rheumatoid arthritis (RA) and perovskite quantum dots (QDs) with unique photophysical properties are used as fluorescent signals for positioning Pt-MOF@Au@QDs/PDA nanoparticles. In addition, the Pt-MOF@Au@QDs/PDA catalyzer combines Au's surface plasmon resonance excitation with Pt-MOF Schottky junction, and exhibits extremely efficient photocatalytic H2 production under visible light irradiation. The Pt-MOF@Au@QDs/PDA achieves the aggregation of rheumatoid synovial cells by the extravasation through “ELVIS” effect (extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration) and extremely efficient photocatalytic H2 production. By combining PTT and H2 therapy, the Pt-MOF@Au@QDs/PDA relieves the oxidative stress of RA, and shows significant improvement in joint damage and inhibition of the overall arthritis severity of collagen-induced RA mouse models. Therefore, the Pt-MOF@Au@QDs/PDA shows great potential in the treatment of RA and further clinical transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.