Abstract
In fuel cell technologies, the sluggish kinetics of oxygen reduction reaction (ORR) on the cathode is the main obstacle, and it is thus urgent to develop high-performance catalysts. In this work, we have synthesized 10nm-sized octahedral PtCu alloy nanocrystals by a simple one-pot strategy using I- as shape-directing agent instead of using large surfactants. The area specific activity and mass activity of the synthesized octahedral PtCu/C reach 4.25mAcm−2 and 1.20mAμgPt−1 at 0.90V (vs RHE), respectively, which are 21.3 and 8.6 times higher than those of commercial Pt/C catalysts. Unexpectedly, we found that the stability of PtCu/C can be enhanced dramatically by doping trace Au (Au/Pt =0.0005). The mass activity loss of PtCuAu0.0005/C was only 8%, much smaller than those of PtCu/C (32%), and Pt/C (52%) after 10,000 potential cycles. This study provides a strategic design of Pt-based efficient ORR catalysts for fuel cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.