Abstract

Oxidative addition of primary, secondary, or benzylic perfluoroalkyl iodides (RF–I) to the phosphine free Ir(I) precursor Ir(acac)(CO)2 1 (acac = 2,4-pentanedionato) proceeds smoothly to afford octahedral Ir(III) products Ir(acac)(I)(RF)(CO)2, A combination of X-ray crystallographic studies and solution spectroscopy shows that these products are the result of overall trans-addition of the C–I bond to iridium, probably a result of thermodynamic control; evidence for a kinetic product resulting from net cis-addition is obtained in one case. Treatment of the Ir(III) compounds with AgOTf (Tf = CF3SO3) illustrates that the iodo ligand is replaced by triflate with retention of stereochemistry at Ir. The resulting triflate complexes are inert to displacement by H2O or H2. The Ir(III) products exhibit very high CO stretching frequencies in the IR, indicating that the CO ligands may be non-classical. A quantitative estimation of the degree of backbonding to the CO ligands in these compounds, and a comparison of the π-acceptor properties of CO and fluoroalkyl ligands, is made using an approach based on Density Functional Theory (DFT) and Natural Bond Orbital analyses.Key words: iridium, fluoroalkyl, oxidation, carbonyl, DFT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.