Abstract
In this paper, we describe a spelling correction system designed specifically for OCR-generated text that selects candidate words through the use of information gathered from multiple knowledge sources. This system for text correction is based on static and dynamic device mappings, approximate string matching, and n-gram analysis. Our statistically based, Bayesian system incorporates a learning feature that collects confusion information at the collection and document levels. An evaluation of the new system is presented as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Document Analysis and Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.