Abstract

The field of Optical Character Recognition (OCR) has gained more attention in the recent years because of its importance and applications. Some examples of OCR are: video indexing, references archiving, car-plate recognition, and data entry. In this work a robust system for OCR is presented. The proposed system recognizes text in poor quality images. Characters are extracted from the given poor quality image to be recognized using chain-code representation. The proposed system uses Google online spelling to suggest replacements for words which are misspelled during the recognition process. For evaluating the proposed system, the born-digital dataset ICDAR is used. The proposed system achieves 74.02 % correctly recognized word rate. The results demonstrate that the proposed system recognizes text in poor quality images efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.