Abstract

While key early(iest) fossils were recently discovered for several crown afrotherian mammal orders, basal afrotherians, e.g., early Cenozoic species that comprise sister taxa to Paenungulata, Afroinsectiphilia or Afrotheria, are nearly unknown, especially in Africa. Possible stem condylarth-like relatives of the Paenungulata (hyraxes, sea-cows, elephants) include only Abdounodus hamdii and Ocepeia daouiensis from the Selandian of Ouled Abdoun Basin, Morocco, both previously only documented by lower teeth. Here, we describe new fossils of Ocepeia, including O.grandis n. sp., and a sub-complete skull of O. daouiensis, the first known before the Eocene for African placentals. O.daouiensis skull displays a remarkable mosaic of autapomophic, ungulate-like and generalized eutherian-like characters. Autapomorphies include striking anthropoid-like characters of the rostrum and dentition. Besides having a basically eutherian-like skull construction, Ocepeia daouiensis is characterized by ungulate-like, and especially paenungulate-like characters of skull and dentition (e.g., selenodonty). However, some plesiomorphies such as absence of hypocone exclude Ocepeia from crown Paenungulata. Such a combination of plesiomorphic and derived characters best fits with a stem position of Ocepeia relative to Paenungulata. In our cladistic analyses Ocepeia is included in Afrotheria, but its shared derived characters with paenungulates are not optimized as exclusive synapomorphies. Rather, within Afrotheria Ocepeia is reconstructed as more closely related to insectivore-like afroinsectiphilians (i.e., aardvarks, sengis, tenrecs, and golden moles) than to paenungulates. This results from conflict with undetected convergences of Paenungulata and Perissodactyla in our cladistic analysis, such as the shared bilophodonty. The selenodont pattern best supports the stem paenungulate position of Ocepeia; that, however, needs further support. The remarkable character mosaic of Ocepeia makes it the first known “transitional fossil” between insectivore-like and ungulate-like afrotherians. In addition, the autapomorphic family Ocepeiidae supports the old – earliest Tertiary or Cretaceous – endemic evolution of placentals in Africa, in contrast to hypotheses rooting afrotherians in Paleogene Laurasian “condylarths”.

Highlights

  • The "condylarths" – or archaic ungulates – are the main and most spectacular radiation of the placental mammals at the beginning of the Tertiary, after the demise of the non-avian dinosaurs

  • The detailed description of the bony labyrinth system of Ocepeia daouiensis will be presented separately with a functional analysis; here we report a comparative description of the main morphological traits of the inner ear that are of systematic and phylogenetic values

  • Lower topological resolution is obtained with partitioned analysis restricted to skull features which indicates that 1) there are some conflicts among the skull features, 2) dental traits provide the stronger phylogenetic signal in our analysis

Read more

Summary

Introduction

The "condylarths" – or archaic ungulates – are the main and most spectacular radiation of the placental mammals at the beginning of the Tertiary, after the demise of the non-avian dinosaurs. This non-monophyletic group includes various ungulate-grade lineages, some of which became extinct more or less quickly by the Eocene, and some other of which succeeded and gave rise to the extant flourishing ungulate orders such as Perissodactyla and Artiodactyla. The fossil record of the ‘‘condylarths’’ is heterogeneous, especially geographically They are well known in the Early Tertiary of the Laurasian continents such as North America, Asia, and Europe, where they diversified in various lineages, including primitive and modern taxa. Relevant earliest Paleogene mammals from India come from the Early Eocene and include rare ‘‘condylarths’’ such as Quettacyonidae [14,15,16,17], and basal representatives of modern clades such as Anthracobunidae, Perissodactyla and Artiodactyla [17,18,19,20,21,22,23,24]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call