Abstract

We present an integrated framework for joint estimation and pursuit of dynamic features in the ocean, over large spatial scales and with multiple collaborating vehicles relying on limited communications. Our approach uses ocean model predictions to design closed-loop networked control at short time scales, and the primary innovation is to represent model uncertainty via a projection of ensemble forecasts into local linearized vehicle coordinates. Based on this projection, we identify a stochastic linear time-invariant model for estimation and control design. The methodology accurately decomposes spatial and temporal variations, exploits coupling between sites along the feature, and allows for advanced methods in communication-constrained control. Simulations with three example datasets successfully demonstrate the proof-of-concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.