Abstract

Exploring the spatial distribution of sea surface height involves two primary methodologies: utilizing gridded reanalysis data post-secondary processing or conducting direct fitting along-track data. While processing gridded reanalysis data may entail information loss, existing direct fitting methods have limitations. Therefore, there is a pressing need for novel direct fitting approaches to enhance efficiency and accuracy in sea surface height fitting. This study demonstrates the viability of Legendre polynomial surface fitting, benchmarked against bicubic quasi-uniform B-spline surface fitting, which has been proven to be a well-established direct fitting method. Despite slightly superior accuracy exhibited by bicubic quasi-uniform B-spline surface fitting under identical order combinations, Legendre polynomial surface fitting offers a simpler structure and enhanced controllability. However, it is pertinent to note that significant expansion of the spatial scope of fitting often results in decreased fitting efficacy. To address this, the current research achieves the precise fitting of sea surface height across expansive spatial ranges through a regional stitching methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.