Abstract

Abstract Isopycnal slope spectra were computed from thermistor data obtained using a microstructure platform towed through turbulence generated by internal tidal motions near the Hawaiian Ridge. The spectra were compared with turbulence dissipation rates ɛ that are estimated using shear probes. The turbulence subrange of isopycnal slope spectra extends to surprisingly large horizontal wavelengths (>100 m). A four-order-of-magnitude range in turbulence dissipation rates at this site reveals that isopycnal slope spectra ∝ ɛ2/3k1/3x. The turbulence spectral subrange (kx > 0.4 cpm) responds to the dissipation rate as predicted by the Batchelor model spectrum, both in amplitude and towed vertical coherence. Scales between 100 and 1000 m are modeled by a linear combination of internal waves and turbulence while at larger scales internal waves dominate. The broad bandwidth of the turbulence subrange means that a fit of spectral amplitude to the Batchelor model yields reasonable estimates of ɛ, even when applied at scales of tens of meters that in vertical profiles would be obscured by other fine structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.